INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Second Year, Second Semester, 2014-15 Statistics - II, Semesteral Examination, May 5, 2015 Answer all questions

1. Let X_1, X_2, \ldots, X_n be a random sample from $\text{Exp}(\lambda)$ with density $f(x|\lambda) = \lambda \exp(-\lambda x), x > 0$, where $\lambda > 0$ is unknown. Consider testing at level α

$$H_0: \lambda \leq 1$$
 versus $H_1: \lambda > 1$.

(a) Show that the conditions required for the existence of UMP test are satisfied here.

(b) Derive the UMP test of level α .

(c) Consider the test which rejects H_0 whenever $2X_1 < C$ where C is $\chi^2_{1,\alpha}$, the α quantile of χ^2_1 . Show that this is a level α test but it is not UMP. [11]

2. Suppose X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n are independent random samples, respectively, from $N(\mu_1, \sigma^2)$ and $N(\mu_2, \sigma^2)$, where μ_1, μ_2 and σ^2 are unknown. (a) Find the MLE of (μ_1, μ_2, σ^2) .

(b) Derive the generalized likelihood ratio test for testing $H_0: \mu_1 = \mu_2$ versus $H_1: \mu_1 \neq \mu_2$. [12]

3. Let X_1, X_2, \ldots, X_n be a random sample from $Poisson(\lambda)$, where $\lambda > 0$ is unknown.

(a) Find the Fisher Information $I_1(\lambda)$ contained in X_1 .

(b) Find an estimator $T_n = T_n(X_1, \ldots, X_n)$ such that

$$\sqrt{n}(T_n - \lambda) \longrightarrow N(0, 1/I_1(\lambda)).$$

(c) Find a transform $g(T_n)$ which is asymptotically normal and also has asymptotic variance free of λ . [12]

4. The weekly number of fires, X, in a town has the $Poisson(\theta)$ distribution. The numbers of fires observed for five weekly periods were 0, 1, 1, 0, 0. Assume that the prior distribution on θ is

$$\pi(\theta) \propto \theta \exp(-10\theta) I_{(0,\infty)}(\theta).$$

(a) Derive the posterior distribution θ given the data.

(b) Find the highest posterior density estimate of θ . Compare this with the maximum likelihood estimate of θ .

(c) Find the posterior mean and posterior standard deviation of θ . [15]